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Abstract. Gastroscopic Lesion Detection (GLD) plays a key role in
computer-assisted diagnostic procedures. However, this task is not well
studied in the literature due to the lack of labeled data and the appli-
cable methods. Generic detectors perform below expectations on GLD
tasks for 2 reasons: 1) The scale of labeled data of GLD datasets is far
smaller than that of natural-image object detection datasets. 2) Gastro-
scopic images exhibit distinct differences from natural images, which are
usually of high similarity in global but high diversity in local. Such char-
acteristic of gastroscopic images also degrades the performance of using
generic self-supervised or semi-supervised methods to solve the labeled
data shortage problem using massive unlabeled data. In this paper, we
propose Self- and Semi-Supervised Learning (SSL) for GLD tailored for
using massive unlabeled gastroscopic images to enhance GLD tasks per-
formance, which consists of a Hybrid Self-Supervised Learning (HSL)
method for backbone pre-training and a Prototype-based Pseudo-label
Generation (PPG) method for semi-supervised detector training. The
HSL combines patch reconstruction with dense contrastive learning to
boost their advantages in feature learning from massive unlabeled data.
The PGG generates pseudo-labels for unlabeled data based on similarity
to the prototype feature vector to discover potential lesions and avoid
introducing much noise. Moreover, we contribute the first Large-scale
GLD Datasets (LGLDD), which contains 10,083 gastroscopic images
with 12,292 well-annotated boxes for four-category lesions. Experiments
on LGLDD demonstrate that SSL can bring significant improvement.
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1 Introduction

Gastroscopic Lesion Detection (GLD) plays a key role in computer-assisted
diagnostic procedures. Although deep neural network-based object detectors
achieve tremendous success within the domain of natural images, directly train-
ing generic object detectors on GLD datasets performs below expectations for
two reasons: 1) The scale of labeled data in GLD datasets is limited in compar-
ison to natural images due to the annotation costs. Though gastroscopic images
are abundant, those containing lesions are rare, which necessitates extensive
image review for lesion annotation. 2) The characteristic of gastroscopic images
exhibits distinct differences from the natural images [18,19,21] and is often of
high similarity in global but high diversity in local. Specifically, each type of
lesion may have diverse appearances though gastroscopic images look quite sim-
ilar. Some appearances of lesions are quite rare and can only be observed in a
few patients. Generic self-supervised backbone pre-training or semi-supervised
detector training methods can solve the first challenge for natural images but its
effectiveness is undermined for gastroscopic images due to the second challenge.

Self-Supervised Backbone Pre-training methods enhance object detection
performance by learning high-quality feature representations from massive unla-
belled data for the backbone. The mainstream self-supervised backbone pre-
training methods adopt self-supervised contrast learning [3,4,7,9,10] or masked
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Fig. 1. Pipeline of Self- and Semi-Supervised Learning (SSL) for GLD. SSL
consists of a Hybrid Self-Supervised Learning (HSL) method and a Prototype-based
Pseudo-label Generation (PPG) method. HSL combines patch reconstruction with
dense contrastive learning. PPG generates pseudo-labels for potential lesions based
on the similarity to the prototype feature vectors.
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image modeling [8,15]. Self-supervised contrastive learning methods [3,4,7,9] can
learn discriminative global feature representations, and [10] can further learn
discriminative local feature representations by extending contrastive learning
to dense paradigm. However, these methods usually cannot grasp enough local
detailed information. On the other hand, masked image modeling is expert in
extracting local detailed information but is weak in preserving the discriminabil-
ity of feature representation. Therefore, both types of methods have their own
weakness for GLD tasks.

Semi-Supervised object detection methods [12,14,16,17,20,22,23] first use
detectors trained with labeled data to generate pseudo-labels for unlabeled data
and then enhance object detection performance by regarding these unlabeled
data with pseudo-labels as labeled data to train the detector. Current pseudo-
label generation methods rely on the objectiveness score threshold to generate
pseudo-labels, which makes them perform below expectations on GLD, because
the characteristic of gastroscopic lesions makes it difficult to set a suitable thresh-
old to discover potential lesions meanwhile avoiding introducing much noise.

The motivation of this paper is to explore how to enhance GLD perfor-
mance using massive unlabeled gastroscopic images to overcome the labeled
data shortage problem. The main challenge for this goal is the characteristic
of gastroscopic lesions. Intuitively, such a challenge requires local feature rep-
resentations to contain enough detailed information, meanwhile preserving dis-
criminability. Enlightened by this, we propose the Self- and Semi-Supervised
Learning (SSL) framework tailored to address challenges in daily clinical prac-
tice and use massive unlabeled data to enhance GLD performance. SSL over-
comes the challenges of GLD by leveraging a large volume of unlabeled gastro-
scopic images using self-supervised learning for improved feature representations
and semi-supervised learning to discover and utilize potential lesions to enhance
performance. Specifically, it consists of a Hybrid Self-Supervised Learning
(HSL) method for self-supervised backbone pre-training and a Prototype-based
Pseudo-label Generation (PPG) method for semi-supervised detector training.
The HSL combines the dense contrastive learning [10] with the patch recon-
struction to inherit the advantages of discriminative feature learning and grasp
the detailed information that is important for GLD tasks. The PPG generates
pseudo-labels based on the similarity to the prototype feature vectors (formu-
lated from the feature vectors in its Memory Module) to discover potential lesions
from unlabeled data, and avoid introducing much noise at the same time. More-
over, we propose the first Large-scale GLD Datasets (LGLDD), which contains
10,083 gastroscopic images with 12,292 well-annotated lesion bounding boxes
of four categories of lesions (polyp, ulcer, cancer, and sub-mucosal tumor). We
evaluate SSL with multiple detectors on LGLDD and SSL brings significant
improvement compared with baseline methods (CenterNet [6]: +2.7AP, Faster
RCNN [13]: +2.0AP). In summary, our contributions include:

— A Self- and Semi-supervise Learning (SSL) framework to leverage massive
unlabeled data to enhance GLD performance.
— A Large-scale Gastroscopic Lesion Detection datasets (LGLDD)
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— Experiments on LGLDD demonstrate that SSL can bring significant enhance-
ment compared with baseline methods.

2 Methodology

In this section, we introduce the main ideas of the proposed SSL for GLD. The
proposed approach includes 2 main components and is illustrated in Fig. 1.

2.1 Hybrid Self-supervised Learning

The motivation of Hybrid Self-Supervised Learning (HSL) is to learn the local
feature representations of high discriminability meanwhile contain detailed infor-
mation for the backbone from massive unlabeled gastroscopic images. Among
existing backbone pre-training methods, dense contrastive learning can preserve
local discriminability and masked image modeling can grasp local detailed infor-
mation. Therefore, to leverage the advantages of both types of methods, we
propose Hybrid Self-Supervised Learning (HSL), which combines patch recon-
struction with dense contrastive learning to achieve the goal.

Structure. HSL heritages the structure of the DenseCL [10] but adds an extra
reconstruction projection head to reconstruct patches. Specifically, HSL consists
of a backbone network and 3 parallel sub-heads. The global projection head
and the dense projection head heritages from the DenseCL [10], and the pro-
posed reconstruction projection head is inspired by the Masked Image Modeling.
Enlightened by the SimMIM [15], we adopt a lightweight design for the recon-
struction projection head, which only contains 2 convolution layers.

Learning Pipeline. Like other self-supervised contrastive learning methods,
HSL randomly generates 2 different “views” of the input image, uses the backbone
to extract the dense feature maps Fi,Fy € RT*XWXC and then feeds them to
the following projection heads. The global projection head of HSL uses F1, Fy
to obtain the global feature vector fy1, fso like MoCo [9]. The dense projection
head and the reconstruction projection head crop the dense feature maps F1, Fo
into S x S patches and obtain the local feature vector sets F; and Fs of each view
(F ={f1, f2,..., fs2}). The dense projection head use F; and Fs to obtain local
feature vector sets Fy; and Fio (F; = {fi1, fi2, ..., fis2}) like DenseCL [10]. The
reconstruction projection head uses each feature vector in Fy,Fs to reconstruct
corresponding patches and obtains the patch set Py, Po(P = {pi1, pia, ---, Pis2 }-

Training Objective. The HSL formulates the two contrastive learning as dic-
tionary look-up tasks like DenseCL [10] while the reconstruction learning as a
regression task. The global contrastive learning uses the global feature vector £,
of an image as query q and feature vectors from the alternate view of the query
image and the other images within the batch as keys K = {ky, ko, ..., }. For each
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query q, the only positive key k is the different views of the same images and
the others are all negative keys (k_) like MoCo [9]. We adopt the InfoNCE loss
function for it:

exp(q- ki /T)
exp(q- ki) + >y exp(q-k_/7)

Lo = —log

The dense contrastive learning uses the local feature vector in Fy; as query r
and keys T; = {¢1, 2, ..., }. The negative keys ¢_ here are the feature vectors of
different images while the positive key ¢, is the correspondence feature vector
of r in another view of the images. Specifically, we adopt the correspondence
methods in DenseCL [10] to obtain the positive key ¢, which first conducts the
matching process based on vector-wise cosine similarity between r and feature
vectors in T and then selects the ¢; of highest similarity as the ¢;. The loss
function is also the InfoNCE loss but in a dense paradigm:

1 exp(r® - t5. /1)
S
Lo 52 Z 9 exp(rs - t5) + 3 exp(rs -2 /)

The reconstruction task uses the feature vector in F to reconstruct each patch and
obtain P;. The ground truth is the corresponding patches V; = {v;1, via, ..., ;52 }
of the input view. We adopt the MSE loss function for it:

1 2
Lr=3q > E(vi—pi)
The overall loss function is the weighted sum of these losses:
Ly =Lc+ApLp +ArLR

where A\p and Ag are the weights of Lp and L and are set to 1 and 2.

2.2 Prototype-Based Pseudo-label Generation Method

We propose the Prototype-based Pseudo-label Generation method (PPG) to
discover potential lesions from unlabeled gastroscopic data meanwhile avoid
introducing much noise to further enhance GLD performance. Specifically, PPG
adopts a Memory Module to remember feature vectors of the representative
lesions as memory and generates prototype feature vectors for each class based
on the memories stored. To preserve the representativeness of the memory and
further the prototype feature vectors, PPG designs a novel Memory Update
Strategy. In semi-supervised learning, PPG generates pseudo-labels for unlabeled
data relying on the similarity to the prototype feature vectors, which achieves a
better balance between lesion discovery and noise avoidance.

Memory Module. Memory Module stores a set of lesion feature vectors as
memory. For a C-class GLD task, the Memory Module stores C x N feature



88 X. Zhang et al.

vectors as memory. Specifically, for each lesion, we denote the feature vector used
to classify the lesion in the detector as f.. PPG stores N feature vectors for each
class ¢ to formulate the class memory m. = {fe1, feo, ..., fen }, and the memory
M of PPG can be expressed as M = {m1,mg,...,mc}. Then, PPG obtains the
prototype feature vector p. by calculating the center of each class memory m.,
and the prototype feature vector set can be expressed as P; = {p1,p2,...,pc}
Moreover, the prototype feature vectors further serve as supervision for detector
training under a contrastive clustering formulation and adopt a contrastive loss:

c
Lee = || ferpell + Y maz(0,1 — || fe, p;l)
J#c
If the detector training loss is Lpe;, the overall loss £ can be expressed as:

L= EDet + )\ccﬁcc

where the \.. is the weight of the contrastive learning loss and is set to 0.5.

Memory Update Strategy. Memory Update Strategy directly influences the
representativeness of the class memory m, and further the prototype feature
vector p.. Therefore, PPG adopts a novel Memory Update Strategy, which fol-
lows the idea that “The Memory Module should preserve the more representative
feature vector among similar feature vectors”. The pipeline of the strategy is as
follows: 1) Acquisition the lesion feature vector f7. 2)Identification of the most
similar fs to f. from corresponding class memory m, based on similarity:

fo=maz sim(fe;, f2)

3) Updating the memory by selecting more unique features f; of F/' = {f., f.}
compared to the class prototype feature vector p. based upon similarity:
fs = argmin sim(f’, p.)
f/ cF’

The similarity function sim(u,v) can be expressed as sim(u,v) = ulv/|ull||v]|.
To initialize the memories, we empirically select 50 lesions randomly for each
class. To maintain stability, we start updating the memory and calculating its
loss after fixed epochs, and only the positive sample feature vector can be selected
to update the memory.

Pseudo-label Generation. PPG proposes to generate pseudo-labels based on
the similarity between the prototype feature vectors and the feature vector of
potential lesions. To be specific, PPG first detects a large number of potential
lesions with a low objectiveness score threshold 7, and then matches them with
all the prototype feature vectors P to find the most similar one:
¢ = argmazx sim(pe, fu)
pcEP

PPG assigns the pseudo-label ¢ for similarity value sim(p., f..) greater than the
similarity threshold 7, otherwise omits it. We set 7, = 0.5 and 7, = 0.5
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3 Datasets

We contribute the first Large-scale Gstroscopic Lesion Detection Datasets
(LGLDD) in the literature.

DenseCL DenseCL HSL HSL SSL SSL
CenterNet Faster RCNN CenterNet Faster RCNN CenterNet  Faster RCNN

Fig. 2. Qualitative Results of SSL on LGLDD. SSL can actually enhance the
GLD performance for some challenging cases.

Collection : LGMDD collects about 1M+ gastroscopic images from 2 hospi-
tals of about 500 patients and their diagnosis reports. After consulting some
senior doctors and surveying gastroscopic diagnosis papers [1], we select to
annotate 4-category lesions: polyp(pol), ulcer(ulc), cancer(can) and sub-mucosal
tumor(smt). We invite 10 senior doctors to annotate them from the unlabeled
endoscopic images. To preserve the annotation quality, doctors can refer to the
diagnosis reports, and each lesion is annotated by a doctor and checked by
another. Finally, they annotates 12,292 lesion boxes in 10,083 images after going
through about 120,000 images. The polyp, ulcer, cancer, and sub-mucosal tumor
numbers are 7,779, 2,171, 1,164and 1,178, respectively. The train/val split of
LGMDD is 8,076/2,007. The other data serves as unlabeled data.

Evaluation Metrics : We use standard object detection metrics to evaluate the
GLD performance, which computes the average precision (AP) under multiple
intersection-of-union (IoU) thresholds and then evaluate the performance using
the mean of APs (mAP) and the AP of some specific IoU threshold. For mAP,
we follow the popular object detection datasets COCO [11] and calculate the
mean of 11 APs of IoU from 0.5 to 0.95 with stepsize 0.05 (mAP @[.5:.05:.95]).
We also report AP under some specific IoU threshold (APsq for .5, APy for .75)
and AP of different scale lesions (APs, APy, APp) like COCO [11].

4 Experiments

Please kindly refer to the Supplemental Materials for implementation details
and training setups.
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Table 1. Quantitative Results of SSL on LGLDD. Both components of SSL (HSL
& PPQG) can bring significant performance enhancement for GLD tasks.

Detector Pre-training | PPG | AP | APso | AP75 | APs | APy | AP, |pol |stm |uls |can
X 29.3 |57.2 254 |22.0 |31.6 |31.3 |41.6 |36.0 |27.3 12.1
X 34.1 |70.6 |28.1 |28.2 129.2 35.6 |44.0 |44.4 |24.0 |24.2
X 31.9 |60.7 [29.5 |22.6 |32.1 |34.7 |43.2 |43.1 |28.2 |13.2
Faster RCNN | DenseCL X 35.3 |71.9 294 [29.9 [31.8 |37.1 [44.9 46.7 |25.4 |24.3
CenterNet HSL X 33.7 164.2 [30.6 |23.1 33.7 |35.9 |42.5 |45.3 |28.8 | 18.0
Faster RCNN | HSL X 36.4 |74.0 |31.4 |27.9 31.8 38.3 |43.7 |48.0 |26.1 27.6

v

v

CenterNet Supervised
Faster RCNN | Supervised
CenterNet DenseCL

CenterNet HSL 34.6 165.6 |31.6 |21.7 329 |37.3 |43.1 |46.3 |29.3 19.6
Faster RCNN | HSL 37.3/74.8 |33.2 | 28.8 33.5 |39.4 | 44.9 | 51.0|26.1 27.3

Table 2. Parameters Analysis Experiment Results. (a) Reconstruction loss
weight Ar. (b) Objectiveness Score Threshold 7,. (¢) Memory update strategies. (d)
Extension experiment on Endo21.

(a) (b) (c) (d)
Ar| AP APsy APrs Tu AP APso APrs AP APso APrs AP APso APrs
0.5]35.8 73.1 30.7 w/o | 364 740 314 Q-like|37.0 742 314 YOLO v5 | 60.5 81.0 66.4
1 /36.4 74.0 31.4 0.7 |36.7 740 32.1 PPG | 37.3 74.8 33.2 Faster RCNN | 57.8 79.1 68.1
2 1363 734 318 0.6 |36.2 73.7 318 +DenseCL | 59.0 80.9 66.0
5 355 716 29.5 0.5 | 358 724 309 +HSL 61.4 83.0 67.3
o PPG|37.3 74.8 33.2 +PPG 61.9 83.0 69.2

Main Results. Table1 shows the quantitative results of SSL on LGLDD. As
is illustrated, when compared with the DenseCL [10] baseline, SSL can enhance
2.0AP and 2.7AP for Faster RCNN and CenterNet respectively. When compared
with the supervised pre-training (ImageNet [5] weights) baseline, SSL can boost
more AP enhancement (CenterNet: +5.3AP, FasterRCNN: +3.2AP). Qualitative
Results are shown in Fig. 2. It can be noticed, SSL can actually enhance the GLD
performance for both types of detectors, especially for some challenging cases.

Ablation Studies. We further analyze each component of SSL (HSL & PPG).
HSL can bring 1.8 AP and 1.1 AP enhancement for CenterNet and FasterRCNN
respectively compared with DenseCL. PPG can bring extra 0.9AP and 0.9AP
enhancement for CenterNet and FasterRCNN respectively.

Parameter Analysis. We conduct extra experiments based on Faster RCNN
to further analyze the effect of different parameter settings on LGLDD.

1) Reconstruction Loss Weight Ap is designed to balance the losses of con-
trastive learning and the reconstruction, which is to balance the discriminability
and the detailed information volume of local feature representations. As illus-
trated in Table 2.a, only suitable Ag can fully boost the detection performance.
2) Objectiveness score threshold 7,: We compare PPG with objective-
ness score-based pseudo-label generation methods with different 7,, (Table 2.b).
The Objectiveness score threshold controls the quality of pseudo-labels. a) A
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low threshold generates noisy pseudo-labels, leading to reduced performance (-
0.6/-0.2 AP at thresholds 0.5/0.6). b) A high threshold produces high-quality
pseudo-labels but may miss potential lesions, resulting in only slight performance
improvement (+0.3 AP at threshold 0.7). ¢) PPG approach uses a low threshold
(0.5) to identify potential lesions, which are then filtered using prototype feature
vectors, resulting in the most significant performance enhancement (+0.9 AP).
3) Memory Update Strategy influences the representativeness of memory
and the prototype feature vectors. We compare our Memory Update Strategy
with a queue-like (‘Q-like’) memory update strategy (first in & first out). Exper-
iment results (Table 2.c) show our Memory Update Strategy performs better.
4) Endo21: To further evaluate the effectiveness of SSL, we conduct experi-
ments on Endo21 [2] Sub-task 2 (Endo21 challenge consists of 4 sub-tasks and
only the Sub-task 2 train/test split is available according to the [2]). Experi-
mental results in Table 2.d show that SSL can bring significant improvements to
publicly available datasets. Moreover, SSL overperforms current SOTA (YOLO
v5 [2]).

5 Conclusion

In this work, we propose Self- and Semi-Supervised Learning (SSL) for GLD
tailored for using massive unlabeled gastroscopic to enhance GLD performance.
The key novelties of the proposed method include a Hybrid Contrastive Learning
method for backbone pre-training and a Prototype-based Pseudo-Label Gener-
ation method for semi-supervised learning. Moreover, we contribute the first
Large-scale GLD Datasets (LGLDD). Experiments on LGLDD prove that SSL
can bring significant improvements to GLD performance. Since annotation cost
always limits of datasets scale of such tasks, we hope SSL and LGLDD could
fully realize its potential, as well as kindle further research in this direction.
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